Using H 2 norm to bound H ∞ norm from above on Real Rational Modules
نویسندگان
چکیده
Various optimal control strategies exist in the literature. Prominent approaches are Robust Control and Linear Quadratic Regulators, the first one being related to the H∞ norm of a system, the second one to the H norm. In 1994, F. De Bruyne et al [1] showed that assuming knowledge of the poles of a transfer function one can derive upper bounds on the H∞ norm as a constant multiple of its H norm. We strengthen these results by providing tight upper bounds also for the case where the transfer functions are restricted to those having a real valued impulse response. Moreover the results are extended by studying spaces consisting of transfer functions with a common denominator polynomial. These spaces, called rational modules, have the feature that their analytic properties, captured in the integral kernel reproducing them, are accessible by means of purely algebraic techniques.
منابع مشابه
Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملOn the Finsler modules over H-algebras
In this paper, applying the concept of generalized A-valued norm on a right $H^*$-module and also the notion of ϕ-homomorphism of Finsler modules over $C^*$-algebras we first improve the definition of the Finsler module over $H^*$-algebra and then define ϕ-morphism of Finsler modules over $H^*$-algebras. Finally we present some results concerning these new ones.
متن کاملTwo Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane
Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...
متن کاملℋ∞ control design for time-delay linear systems: A rational transfer function based approach
The paper by R. H. Korogui, A. R. Fioravanti, and J. C. Geromel focuses on the H∞ control design for time-delay linear systems. The results are based on the use of a comparison system obtained via Rekasius’ substitution. As it is known from the delay systems’ literature, this transformation allows to approximate the non-rational transfer functions by rational ones. Moreover the two transfer fun...
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کامل